

Tetrahedron Letters, Vol. 35, No. 29, pp. 5113-5116, 1994 Elsevier Science Ltd Printed in Great Britain 0040-4039/94 \$7.00+0.00

0040-4039(94)01001-3

## Total Synthesis of Myxovirescin A<sub>1</sub>

David R. Williams<sup>\*</sup> and Jie Li

Department of Chemistry, Indiana University Bloomington, Indiana 47405 U.S.A.

Key Words: enantioselective conjugate addition; macrolactamization

Abstract: Stereocontrolled synthesis of myxovirescin  $A_1$  (1a), a 28-membered macrolactam lactone, is accomplished via a highly convergent route. Ring closure of the macrocycle is realized by macrolactamization using the Mukaiyama procedure.

The myxovirescins, consisting of thirty-one macrolactam lactone antibiotics, were first isolated from the fermentation broth of *Myxococcus virescin* (Mx v 48).<sup>1</sup> A predominant component, myxovirescin A<sub>1</sub>, inhibits the growth of *E. coli* and other enterobacteria.<sup>2</sup> The structure elucidation of myxovirescin A<sub>1</sub> (1a) was accomplished by X-ray crystallography of the bisacetonide of 1a in conjunction with degradation experiments.<sup>1.3</sup> We have previously reported total synthesis of myxovirescin B (1c), demonstrating ring closure via the intramolecular Horner-Emmons reaction.<sup>4</sup> Myxovirescin M<sub>2</sub> (1b) was synthesized by Seebach and coworkers,<sup>5</sup> using a Yamaguchi macrolactonization. Herein, we report the total synthesis of myxovirescin A<sub>1</sub>, establishing construction of the *anti*-1,3-dimethyl substitution pattern for C<sub>25</sub>-C<sub>27</sub> and a new strategy for ring closure affording these antibiotics via macrolactamization.



Our initial efforts to selectively produce the 25(R), 27(R)-dimethyl substitution of Myxovirescin A<sub>1</sub> via conjugate hydride reductions of <u>1c</u> and its protected derivatives were not satisfactory. This led us to redesign our synthesis strategy to accommodate introduction of the 1,3-*anti*-dimethyl substituents of <u>1a</u> as illustrated in Scheme I. Conjugate addition to the 4(S)-benzyl-2-oxazolidinone  $2^6$  occurred with high diastereofacial selectivity using the organocopper-boron trifluoride procedure developed by Yamamoto.<sup>7</sup> Thus, 3-benzyloxy-2(R)-methyl-1-bromopropane was converted to its corresponding Grignard reagent (Mg°, THF, reflux) followed by addition of purified cuprous iodide (1 equiv. at -30 °C, 0.5 hr) with subsequent cooling to -78 °C and dropwise introduction of freshly distilled BF<sub>3</sub>\*Et<sub>2</sub>O (1.0 equiv.). The organocopper species <u>2</u> afforded oxazolidinone <u>4</u> in nearly quantitative yield (96%) as a 9:1 ratio of C-25 isomers. Other preparations for mixed Gilman reagents or cuprates, derived from our starting bromide, gave reduced yields and problematic mixtures of diastereomers.

The diastereoselection of our conjugate addition is rationalized by Lewis acid coordination to provide, for steric reasons, an enhanced preference for the *s*-trans conformer 2b. Proximity to the C-4 chiral center of 2b effects nucleophilic addition to the less hindered, re-face of the unsaturated system.



Our results feature the same general outcome of cuprate additions as reported for the camphor-based auxiliaries of unsaturated esters described by Oppolzer.<sup>8</sup> and the unsaturated imides of Koga.<sup>9,10</sup> However, additional studies have demonstrated that stereoselectivity may also be highly dependent upon the nature of the cuprate reagent.<sup>11</sup>



Alcohol 5 (Scheme I) was produced upon hydride reduction of 4. Conversion to the iodide 6 was followed by coupling with allylmagnesium chloride to yield alkene 7. Standard techniques led to the primary bromide <u>8b</u>, which was transformed to its Grignard reagent for addition to the aldehydic sulfone 9.4.12 The resulting mixture of alcohols 10 underwent oxidation, ketalization and deprotection to produce optically pure sulfone 11 in 83% overall yield from 10.

Following the precedence established in our myxovirescin B synthesis, the Julia-Lythgoe reductive coupling of components 11 and 12 proceeded smoothly (Scheme II) without the usual acylation of the intermediate  $\beta$ -sulfonyl alcohols prior to treatment with sodium-amalgum. The crude product 13 was obtained in 69% overall yield as a mixture of  $E/Z C_{14}$ - $C_{15}$  isomers (ratio 6.5:1), with transformation to the azide 14 as previously described.<sup>4</sup>

Our route to myxovirescin  $A_1$  necessitated a new strategy for macrocyclization. These results are summarized in Scheme II. Oxidation of the primary alcohol at C<sub>28</sub> to the carboxylic acid <u>15</u> without epimerization or deprotection was crucial. This was accomplished in a mild two-step sequence employing a Swern reaction followed by a buffered sodium chlorite oxidation of the intermediate aldehyde.<sup>13</sup>



In situ, 2-methyl-2-butene served as a scavenger for electrophilic byproducts sparing the diene moiety of 15 from allylic oxidation. Esterification of 15 with 2(S)-1-tert-butyldiphenylsiloxy-2-pentanol (16)<sup>14</sup> using the Yamaguchi protocol<sup>15</sup> provided ester 17 in quantitative yield. Desilylation of 17 with *n*-Bu<sub>4</sub>N<sup>+</sup>F<sup>-</sup> in THF afforded a 1:1 ratio of primary alcohol 18 and isomeric secondary alcohol resulting from intramolecular acyl transfer. This rearrangement was minimized to 10% or less using HF\*Et<sub>3</sub>N in acctonitrile for the deprotection of 17. Sequential oxidations of 18, as previously described for alcohol 14, gave the carboxylic acid 19 (76% overall yield) without  $\alpha$ -epimerizations. Our efforts to incorporate 2(S)-hydroxypentanoate derivatives for esterifications of 15, leading directly to 19, produced substantial isomerization at C<sub>2</sub> and at C<sub>27</sub> as well as problems for selective hydrolysis and deprotection of esters of 19.

Finally macrolactamization was accomplished via the quantitative reduction of <u>19</u> to the corresponding amino acid with triphenylphosphine in aqueous THF at reflux. Purification by silica gel chromatography and subsequent cyclization utilizing Mukaiyama conditions<sup>16</sup> for acyl activation afforded the twenty-eight membered macrocycle in 59% yield from <u>19</u>. Acid-promoted deprotection was achieved upon stirring in aqueous methanol yielding synthetic myxovirescin A<sub>1</sub> ( $[\alpha]_D^{24}$  +26.8° (MeOH, C = 0.38)) which was identical in all respects to a sample of natural product generously supplied by Trowitzsch-Kienast<sup>17</sup>

## Acknowledgement: We gratefully acknowledge financial assistance provided by the National Institutes of Health (GM41560).

## References

- 1. Trowitzsch, W.; Wray, V.; Gerth, K.; Höfle, G. Chem. Commun. 1982, 1340. Trowitzsch-Kienast, W.; Schober, K.; Wray, V.; Gerth, K.; Reichenbach, H.; Höfle, G. Liebigs Ann. Chem. 1989, 345.
- 2. Onishi, N.; Izaki, K.; Takahashi, H. J. Antibiotics 1984, 37, 13.
- 3. Trowitzsch, W.; Borgschulte, K.; Wray, V.; Schomburg, D.; Höfle, G. Liebigs Ann. Chem. 1985, 1629.
- 4. Williams, D.R.; McGill, J.M. J. Org. Chem. 1990, 3457.
- Seebach, D.; Maestro, M.A.; Sefkow, M.; Neidlain, A.; Sternfeld, F.; Adam, G.; Sommerfeld, T. Helv. Chim. Acta, 1991, 2112. For semisynthetic modifications of ring size: Borgschulte, K.; Trowitzsch-Kienast, W.; Höfle, G. Liebigs Ann. Chem. 1990, 69.
- 6. Oxazolidinone 2 was prepared as reported: Evans, D.A.; Chapman, K.T.; Bisaha, J. J. Am. Chem. Soc. 1988, 110, 1238.
- 7. Yamamoto, Y. Angew. Chem. Int. Ed. Engl. 1986, 25, 947.
- 8. Oppolzer, W.; Moretti, R.; Godel, T.; Meunier, A.; Loher, H. Tetrahedron Lett. 1983, 24, 4971.
- 9. Tomioka, K.; Suenaga, T.; Koga, K. Tetrahedron Lett. 1986, 27, 369.
- Other conjugate additions to α,β-unsaturated N-acyl oxazolidinones: Nicolás, E.; Russell, K.C.; Hruby, V.J. J. Org. Chem. 1993, 58, 766. Pourcelot, G.; Aubouet, J.; Caspar, A.; Cresson, P. J. Organomet. Chem. 1987, 328, C43.
- 11. Fleming, I.; Kindon, N.D. Chem. Commun. 1987, 1177. Uemura, M.; Oda, H.; Minami, T.; Hayashi, Y. Tetrahedron Lett. 1991, 32, 4565.
- To confirm our stereoassignments, alcohol <u>8a</u> was also prepared in a multistep sequence utilizing the tartrate-based *E*-crotylboronate methodology to provide known alcohol <u>8c</u> (Roush, W.R.; Palkowitz, A.D.; Palmer, M.A.J. J. Org. Chem. 1987, 52, 319.)



Small amounts (5-10%) of the C-25 diastereomer of  $\underline{8a}$  were conveniently removed, on a preparative scale, following column chromatography of diene  $\underline{13}$ .

- 13. For a recent procedure: Lubell, W.D.; Jamison, T.F.; Rapoport, H. J. Org. Chem. 1990, 55, 3511.
- Alcohol <u>16</u> was produced by reduction of 2(S)-hydroxypentanoic acid with LiAlH<sub>4</sub> in ether yielding a diol, which was selectively protected with *tert*-butyldiphenylsilyl chloride.
- 15. For a literature procedure: Suzuki, K.; Tomooka, K.; Katayama, E.; Matsumoto, T.; Tsuchihashi, G. J. Am. Chem. Soc. 1986, 108, 5221.
- 16. For an example of macrolactamization: Jones, T.K.; Reamer, R.A.; Desmond, R.; Mills, S.G. J. Am. Chem. Soc. 1990, 112, 2998. After macrolactamization, the C<sub>26</sub>-C<sub>27</sub> olefin isomers were easily separated by flash chromatography.
- 17. All synthetic compounds were purified and fully characterized. We thank Dr. Wolfram Trowitzsch-Kienast, Gesellschaft für Biotechnology Forschung, Mascheroder Weg 1, D-3000, Braunschweig, Germany, for a pure sample of Myxovirescin A<sub>1</sub>.

(Received in USA 19 April 1994; accepted 19 May 1994)